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Mandelbrot cascade measures were introduced to explain intermittency in fully
developed turbulence. They are defined by the scale hierarchy with a fixed
branching parameter c and by the distribution of breakdown coefficients which
are responsible for the transport of energy from larger to smaller scales. We
show that the measures corresponding to both conservative and nonconserva-
tive cascades strongly depend on the parameter c. In particular, only Lebesgue
measure can be generated by a cascade process with an arbitrary integer c.
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1. INTRODUCTION

Fully developed turbulence has the property of intermittency. (1) Two
approaches have been suggested to explain this phenomenon. The earlier
one involves multiplicative cascades (2–4) which implement Richardson’s idea
of energy being transported in turbulence from larger to smaller scales in
the inertial range. The other approach is based on the postulate that the
field of local energy dissipation is multifractal, (1) i.e., there exists an
hierarchy of subsets Sa of fractional dimension f(a) where the field has a
Holder exponent a. Both approaches ultimately explain nonlinearity of the
scaling exponents y(q) for the structure functions of the dissipation field e:
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where O ·P denotes space averaging. (Here we consider a 1-D space.)
A relation between these two approaches can be established using multi-
fractal formalism (for rigorous results see ref. 5).

Mandelbrot gave a mathematically rigorous formalization of the mul-
tiplicative cascade. (4) His treatment relies on two assumptions which look
reasonable as a first approximation: the ratio c of adjacent scales is con-
stant (c is an integer greater than one) and the Kolmogorov diffusion scale
d is equal to zero.

A cascade is realized as follows: the energy of an eddy of scale Lk is
transported to c eddies of the next scale Lk+1 with random coefficients
{wi, i=1,..., c}, E(; wi)=1. The operation is repeated in an iterative
manner, the coefficients wi(L) corresponding to different eddies that are
independent and identically distributed. The case ; wi — 1 corresponds to
conservative cascades; it occurs in 3-D turbulence.(6) The case of indepen-
dent and identically distributed weights wi, Ewi=1/c is usually referred to
as the Mandelbrot cascade. The above iterative process converges to a non-
trivial cascade measure m(dx) if Ewg logc wg < 1 and P(wg > 0)=1, where
wg=wig and ig is a random index taking the values 1,..., c with equal prob-
abilities (see refs. 7 and 8). The measure m is regarded as an idealized model
for the local dissipation field in turbulence at large Reynolds numbers.

The question as to how the parameter c should be chosen is debatable.
Denoting the inertial scale range by (l0, L0), the values l0, L0 and c are
connected through the relation L0/l0=cN with an integer N. Sreenivasan
and Stolovitzky (6) suggest the value c=2, since the Navier–Stokes equation
involves a nonlinearity of the second order. However, other researchers (9–11)

treat discreteness in cascade dynamics as a mere necessity in order to be
able to describe a physical object involving a continuous set of scales. (It is
supposed that the left-hand side of L0/l0=cN can be replaced by any scale
(l1, L1) from the interval (l0, L0)). No mathematical construction to realize
the second standpoint has been provided. For this reason, when one pro-
ceeds from the second standpoint, one will naturally pose the following
question within the framework of the already available theory: do cascade
measures exist that are independent of the parameter c? This means that a
cascade measure can be realized by a cascade process with an arbitrary
parameter c=2, 3,... . The answer is negative; more precisely, if a cascade
measure can be realized with parameters c=2, 3, 5 then it is the Lebesgue
measure. This question for Mandelbrot cascades was considered in ref. 12.

2. SCALE INVARIANT TAU FUNCTIONS

The scaling exponents y(q) for a cascade measure m are defined as
follows:

978 Molchan



y(q)= lim
nQ.

log ; −

i m(Din)
q

log Dn
(1)

where intervals Din of length Dn=c−n correspond to a c-adic division of
the original space and the summation ;Œ involves nonzero elements m(D)
only. There is a naive way of calulating y(q): replace the space averaging
O ·P by ensemble averaging (the mathematical expectation E) in the rela-
tion ;Œ m(Din)q=Omq(Din)P D

−1
n , and the measure m by the pre-limiting

measure mn, n± 1, where n is the number of iterations. This method yields
a y-function of the form

ỹ(q)=q− logc Ew
q
g−1 (2)

for all q for which the moments exist. The rigorous result in ref. 5 is different:

y(q)=˛ ỹ(q) q− < q < q+
a± q q/q± > 1

(3)

where the lines y=a± q are tangent to the concave curve ỹ(q) at the points
1 [ q+ [. and 0 \ q− \ −.. According to ref. 13, the limit in (3) is to be
understood in the ordinary sense with probability one.

The exact result (3) leads to a monotone dependence of the scaling
coefficients on q and to nonnegative multifractal dimensions, i.e., the
Legendre transform of y is positive. Consequently, the Novikov inequalities
for y(q) in turbulence theory (see ref. 1) are automatically valid, while
criticisms of Kolmogorov’s lognormal hypothesis lose their main support
(see ref. 12 where this feature was treated rigorously for the first time).
Furthermore, the empirical data on y(q), q=p/3, p=1,..., 18 (14) are in
perfect agreement with theoretical calculations based on (2, 3) with a log-
normal variable wg. The agreement is due to the linear correction (3) of the
ỹ-function taken from ref. 14. The lognormal model thus remains sufficient
for practical descriptions of empirical data on y(q); this model contains
only one parameter m0=1− ỹ(2).

As one can see, the empirical data relating to scaling exponents are
easily fitted with a model y. This may indicate a possibility to use a com-
paratively narrow class of functions for parameterization of y(q). Since c is
not known, it is natural to restrict ourselves to consideration of those y(q)
only which are independent of c. That means that the y-function can be
derived from a cascade generator (wi, i=1,..., c) of arbitrary dimension
c=2, 3,... . A description of this class of y-functions is a partial solution to
the problem posed in the present note. In virtue of (2), (3) one needs to
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describe functions of moments Ewqg, Ewg=1 which are representable in the
form

Ewqg=(E[wg(c)]q) t, t=ln 2/ln c, c=3, 4,... (4)

where wg(c) is a quantity that is related to a cascade generator of dimen-
sion c; wg=wg(2). I am unaware whether a full description of the class of
such functions of moments is available. However, when one considers a
subclass of this for which the representation (4) is valid for all t (it is suffi-
cient, if this is so for t=2, 3,... or formally c=21/n), then one arrives at
multiplicative infinitely divisible (MID) random variables wg. A random
variable wg of this type admits (by definition) the multiplicative represen-
tation wg=t1,..., tn, ti \ 0 with independent, identically distributed factors
for any n. The MID class first appeared in refs. 9 and 10 as a corollary of
the existence of c independent cascade measures. The following representa-
tion for MID cascade generators is an analogue of the Levy–Khinchin
representation:

ln Ewqg=F ln Epqxs(dx) — F (e−qx−qe−x+q−1) s(dx) (5)

where ln px is a random Poisson quantity on a grid of step x, i.e.,
P(ln px=xn+bx)=(n!e)−1, while bx is specified by the normalization
Epx=1. Here, x2s(dx) is a local bounded measure on the line (−.,.)
with > (1−(x+1) e−x) s(dx) < 1. The last requirement ensures the exis-
tence of a nontrivial cascade measure. For the derivation of (5) see ref. 12.

In ref. 11 the cascade models are treated in an extended manner using
the operations of addition and multiplication for breakdown coefficients.
We note in this connection that there exist random variables that are infi-
nitely divisible both additively and multiplicatively at the same time. Such
are, e.g., variables having lognormal or Gamma distributions; these were
proposed for use in turbulent cascades of nonconservative type. In particu-
lar, the Gamma model (15) has the following spectral measure in (5):

sa(dx)=e−xax−1(1−e−x)−1 dx, x > 0, a > a0(c) > 0 (6)

The spectral measure s(dx)=sa(dx)−sb(dx), 0 < a < b <., corresponds
to a bounded variable wg=(b/a) ta, b−a of the MID type where ta, b has
Euler’s Beta distribution on the interval [0, 1] with parameters (a, b). In
ref. 6 this model with b/a=c is used to describe conservative turbulent
cascades.

Thus, the class of scale invariant y-functions is broad enough. We note
nevertheless one defect in the mathematical analysis of independent cascades.
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The convergence (3) has been proved only for c-adic divisions of the phy-
sical space where c is a branching parameter that is known exactly.

We now are going to examine the existence of c independent cascade
measures.

3. CASCADE MEASURES THAT ARE INDEPENDENT OF THE

BRANCHING PARAMETER

The following lemma is relevant to the analysis of mean cascade mea-
sures, Em(dx). Below=d denotes equality in distribution.

Let tc=; i \ 1 ei(c) c−i where {ei(c)} are independent, identically dis-
tributed random variables taking the values 0, 1,..., c−1.

Lemma. If tc=2=
d
tc=3, then either the distribution of tci is uniform

or tci=0 or 1 a.s.

Proof. Let Qk(g) be the semi-invariant of the order k for a random
variable g. Then

Qk(tc)=C
i \ 0
Qk(ei(c) c−i)=Qk(e(c))(ck−1)−1

We will use the following relation between semi-invariants Qk and moments
mk of a random variable:

Q1=m1, Q2=m2−m
2
1, Q3=m3−3m1m2+2m

3
1

The moments mk(c) of ei(c) are as follows: mk(2)=P(e(2)=1) :=p and
mk(3)=p1+2kp2, where pi=P(e(3)=i). If tc1=

d
tc2 with c1=2 and c2=3,

then

Qk(e(3))=(3k−1)(2k−1)−1 Qk(e(2))

Putting here k=1, 2, 3, one gets three equations for the unknowns
p, p1, p2:

p1+2p2=2p; p1+4p2=8/3·pq+4p2

p1+8p2=26/7 ·pq(1−2p)+3(2p)(8/3 ·pq+4p2)−2(2p)3

Here, q=1−p. Adding up these equations with the weights 2, −3, 1, one
gets an equation of degree three in p. It can be easily transformed to have
the form p(1−p)(1−2p)=0. The solution p=1/2 leads to a uniform dis-
tribution of tc, while p=0 or p=1 to d-distributions concentrated at x=0
and 1, respectively. The proof is complete. L
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Corollary. If the cascade measure m on [0, 1] can be derived with
branching parameters c=2 and 3, then either m̄(dx)=Em(x) is a Lebesgue
measure or m(dx)=td(x−x0) dx, where x0=0 or 1, t > 0 and Et=1.

Proof. If m is produced by the generator {wi(c)}, then m̄(dx) is
produced by w̄i(c)=Ewi(c)=pi(c). This means that m̄(dx) is the distribu-
tion of the random variable tc from the Lemma with pi(c)=P(e(c)=i).
According to the Lemma, pi(c)=1/c (Lebesgue measure) or p0(c)=1, or
else pc−1(c)=1.

Statement. Consider cascade measures m for which P(m(D) > 0)=1
on any subinterval D ¥ [0, 1] and EM2 <., where M=m[(0, 1)] is the
total mass m.

1. If a cascade measure is generated by conservative cascades with
c=2 and 3, then m is a Lebesgue measure;

2. If a cascade measure is generated by not necessarily conservative
cascades with c=2, 3 and 5, then m is a Lebesgue measure.

Proof. We begin by outlining the main idea of the proof. According
to the Lemma, the mean measure m̄ is a Lebesgue measure, i.e., Em(D)=|D|
and Ewi(c)=1/c for any measure generator {wi(c)}. Relation (4) specifies
how the generators are connected with various values of c. In particular,

C
c−1

0
Ew2i (c)=5C

1

0
Ew2i (2)6

ac

, ac=ln c/ln 2 (7)

Since the generators {wi(c)} are not known, except for the conservative
case, (7) should be modified as follows. Let Di(c) be the division of
[0, 1]=I into c equal parts. In this case

m(Di(c))=
d wi(c) Mi, i=1,..., c

whereMi are independent copies of the total massM of the measure m and
are independent of {wi(c)}. Hence (7) can be replaced by

C
c−1

i=0
Em2(Di(c))=(x+y)ac m2 (8)

where x=Ew20(2), y=Ew
2
1(2) and m2=EM2.

The measure m is fully specified by the distribution of the generator
{w0(2), w1(2)}. For this reason Em2(Di(c)) can be expressed in terms of the
first and second moments of {wa(2)}. The first moments of {wa(2)} are
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known from the Lemma: Ewa(c)=1/c. The remaining ones are x, y, r=
Ew0(2) w1(2), and m2. From the equality

M=d C
c−1

i=0
wi(c) Mi

where {wi(c)} and {Mi} are independent, Mi=
d M, we get a relation

between r and m2:

m2(1−x−y)=2r (9)

The relation can be used to eliminate the unknown r. It turns out that
Em2(Di(c)) is proportional to m2. As a result, Eq. (8) actually contains two
unknowns only, x and y.

If the cascade is conservative, then x=y. This can be seen as follows.
The mean values of w0(2) and w1(2) are equal, and so are the variances,
because w0(2)+w1(2)=1. Therefore the second moments of wa(2) are
equal too, i.e., x=y. This means that it is sufficient to have a single equa-
tion like (8) for c=3 in the conservative case, and two equations for c=3
and c=5 in the nonconservative case.

Thus, one has to find a stochastic representation of m(Di(c)) in terms
of independent copies of the generator (w0(2), w1(2)). Let Dn be a dyadic
subinterval of (0, 1) with length 2−n. We will denote it by the word A(Dn)=
s1,..., sn, si=0 or 1, if 0 ·s1 · · ·sn is the left endpoint of the interval Dn. It
follows from the definition of the independent cascade that

m(Dn)=
d ws1ws1s2 · · ·ws1,..., snMs1,..., sn :=tAMA (10)

where ws1,..., sn are independent variables for different n, and (ws1,..., sn−1, 0,
ws1,..., sn−1, 1) =

d (w0(2), w1(2)); the MA are independent for different words
A andMA=

d M,MA and wAŒ being mutually independent.
The joint representation of m(Dn1 ) and m(Dn2 ) can be derived as

follows. Let A=A(Dn1 )=A0A1 and B=A(Dn2 )=A0A2, where A0 is the
longest word that is common to A and B; A1 and A2 are extensions of the
word A0 in A and B, respectively. Hence

m(Dn1 )=tA0tA1MA, m(Dn2 )=tA0tA2MB (11)

where the structure of tA has been described above (see (10)) and tA0 , tA1 ,
tA2 ,MA,MB are independent.

The measure m is s-additive a.s. Consequently, partitioning an arbi-
trary interval D into nonoverlapping dyadic intervals, one gets a stochastic
representation of m(Di(c)). Consider the case c=3 in more detail.
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The Case c=3. Let (w i0, w
i
1) and (w̃ i0, w̃

i
1), i=1, 2 be independent

copies of the generator {w0(2), w1(2)}; also, {M i} are independent copies
of M and are independent of {w ia, w̃

i
a}. Consider the intervals Di=

Di(c=3).
The interval D0=(0, 1/3); 1/3=0.(01) in binary form gives informa-

tion on the dyadic structure of D0. Taking into account (10, 11), we can
write a stochastic equation for m(D0):

m(D0)=
d w10w

2
0M

1+w10w
2
1T
2[m(D0)] (12)

where m(D0) is to be found in the form of a functional of {w ia, M
i,

i=1, 2,...}, T is the translation over the superscripts: Tw ia=w
i+1
a ,

TM i=M i+1. The desired representation of m(D0) is obtained by iterations
of (12) starting from m(D0)=0. Convergence a.s. is guaranteed by general
cascade results (see ref. 5). From (12) one gets

Em2(D0)=x2m2+2xrEM1Em(D0)+xyEm2(D0)

Here the independence of M1 and T2[w ia, M
i
a, i=1, 2,...] has been used.

The substitutions EM1=1, Em(D0)=|D0 |=1/3 and 2r=(1−x−y) m2
yield

Em2(D0)=(x2+(1−z)/3)(1−v)−1 m2 (13)

where z=x+y, v=xy.
The interval D2=(2/3, 1) is obtained from D0 by reflection transfor-

mation: if D=(a, b), then Dc=(1−b, 1−a), i.e., D2=D
c
0. We now define

an operation [ ]c to act on the basis w ia : [w ia]
c=w iac, where ac=1−a

with a=0 and 1. It is easy to see that, once a representation of m(D)
through the basis {w ia} has been found, then m(Dc)=d [m(D)]c. Recalling
that the basis elements w ia are independent and the means Ew ia=1/2 are
homogeneous, one gets Em2(Dc)={Em2(D)}c, where { · }c means that the
unknowns (x, y) are interchanged: (x, y)Q (y, x). For this reason,
knowing (13), one gets

Em2(D2)={Em2(D0)}c=(y2+(1−z)/3)(1−v)−1 m2 (14)

It remains to find m(D1). One has D1=(1/3, 1/2) 2 (1/2, 2/3) :=dc 2 d,
where d=1/2+1/2D0. Taking into account the above formalism, one has

m(D1)=
d M1

0T[m(D0)]
c+M1

1T[m̃(D0)]
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where m̃(D0) is an independent copy of m(D0) based on the basis {w̃ iaM̃
i}.

Hence

Em2(D1)=x{Em2(D0)}c+yEm2(D0)+2r[Em(D0)]2 (15)

It remains to substitute (13), Em(D0)=1/3, and 2r=1−z in this equation.
Combining (13)–(15), one gets the first equation of type (7) after some
simple manipulations:

(1−z)[2/3 · (z+2)(1−v)−1−4/9]=1−za3, a3=ln 3/ln 2 (16)

where z=x+y, v=xy.

The Solution x+y=1. From (16) it follows that (16) has one
obvious family of solutions (x, y) : x+y=1. Recalling (9), that will mean
the following:

E(w0+w1)2=1=E(w0+w1), Ew0w1=0, wi \ 0

This is possible, if w0+w1=1. However, w0w1=0 and Ewi=1/2, hence
P(w0=0, w1=1)=P(w0=1, w1=0)=1/2. Such a generator produces
the measure m(dx)=d(x−t) dx, where t is a random variable with
uniform distribution on [0, 1]. This type of measure is ruled out by the
Statement.

Conservative Cascades. If x=y, Eq. (16) can be reduced to the
following:

4/9 · (2+x)(1−x)−1=(1−(2x)a3)(1−2x)−1, 0 < x [ 1

We have taken into account the fact that z=2x ] 1. It is easy to see that
the equation has a single root x=1/4, i.e., Ew2a(2)=[Ewa(2)]

2. Conse-
quently, the variance of wa(2) is zero, and w0(2)=w1(2)=1/2. Such a
generator produces the Lebesgue measure. The first part of the Statement
is proven.

The Case c=5. The interval is D0(c)=(0, 1/5), where 1/5=
0.(0011) in binary form. The analogue of (12) is

m(D0)=
d w10w

2
0w
3
0M

1+w10w
2
0w
3
1w
4
0M

2+w10w
2
0w
3
1w
4
1T
4[m(D0)]

Hence

Em2(D0)=(x3m2+x3ym2+2x2r(EM)2 Ew0

+2x2rEMEm(D0)+2x2yrEMEm(D0))×(1−x2y2)−1
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Recall again that EM=1, Ew0=1/2, Em(D0)=1/5 and 2r=(1−x−y) m2.
One has

Em2(D0)=x2(x+v+(1−z)(3+y)/5)(1−v2)−1 m2 (17)

The interval is D1=(1/5, 2/5)=(1/5, 1/4) 2 (1/4, 3/8) 2 (3/8, 2/5)=
1/4Dc0 2 (1/4, 3/8) 2 (3/8+1/8 D0). Consequently,

m(D1)=
d w10w

2
0T
2[m(D0)]c+w

1
0w
2
1w̃
3
0M̃

1+w10w
2
1w̃
3
0T
3[m̃(D0)]

where m̃(D0) is an independent copy of m(D0) based on the basis {w̃ ia, M̃
i}.

Consequently,

Em2(D1)=x2{Em2(D0)}c+x2ym2+xy2Em2(D0)

+2x(1−z)(3+5x) 5−2m2 (18)

The fourth term is given here as transformed by using (9).
The interval is D2=(2/5, 3/5)=1/2 D

c
0 2 (1/2+1/2 D0). Therefore,

m(D2)=
d w10T[m(D0)]

c+w10T[m̃(D0)]

so that

Em2(D2)=x{Em2(D0)}c+yEm2(D0)+2(1−z) 5−2m2 (19)

The intervals are D3=(3/5, 4/5)=D
c
1, D4=(4/5, 1)=D

c
0. Therefore,

Em2(D3)={Em2(D1)}c, Em2(D4)={Em2(D0)}c (20)

Substitute (17)–(20) into (8). After some simple algebra that needs some
care however, one gets the second desired equation F=0 where

F(z, v) :=
z2+4
1−v2

+
3z+2
1−v

−0.5z2−0.8z+2v−3.6−2.5
1−za5

1−z
(21)

Here z=x+y, v=x·y, a5=ln 5/ln 2.
Equation (16) can be used to find an explicit expression of v in terms

of z:

1−v=2/3(z+2)[4/9+(1−za3)/(1−z)]−1 (22)

Substitution of (22) into (21) yields an equation F(z, v(z))=0 for z. The
relation

E C
c−1

i=1
w2i (c)=c

−y(2)
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and the inequality y(2) > y(1)=0 mean that z=x+y [ 1. Numeric cal-
culations show that the equation F(z, v(z))=0 has the single root z=1/2
in the interval (0, 1). But then, v(z=1/2)=1/16 and x=y=1/4. As has
been shown above, this solution leads to the Lebesgue measure. The proof
is complete.

4. CONCLUSION

The above result roughly means that the multifractal cascade measure
remembers the dimension of its generator. Measures that have no such
property are scale invariant and lose the property of intermittency. Mea-
sures that are independent of the branching parameter emerge, explicitly or
implicitly, to substantiate the multiplicative infinite divisibility (9, 10, 16) or
universality (11) of cascade generators. The statistical conclusions about
interscale dependence of breakdown coefficients in turbulent cascades (6, 16)

were essentially based on the knowledge of the branching parameter c. In
other words, independent cascade models become rather restrictive, when
one tries to get beyond merely qualitative explanations of intermittency.
For this reason the Parisi-Frisch explanation of the intermittency pheno-
menon based on the assumption of multifractality for physical fields seems
more flexible. The explanation leaves aside the generating mechanism of
multifractality, which can result from different origins and is capable of
different formalizations. An example is provided by simple sedimentation
models in geology where multifractality not produce by a multiplicative
process. (17)
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